

August 23, 2019

SUPPLEMENTAL STRUCTURAL CALCULATIONS (Permit Corrections #2)

LEE-BOYLE RESIDENCE

4150 Boulevard Place Mercer Island, WA 98040

Quantum Job Number: 19052.01

Prepared for: STUART SILK ARCHITECTS 2400 N. 45th Street Seattle, WA 98103

Prepared by: QUANTUM CONSULTING ENGINEERS 1511 Third Avenue, Suite 323 Seattle, WA 98101 TEL 206.957.3900 FAX 206.957.3901

LEE-BOYLE RESIDENCE 4150 78TH. AVE SE MERCER ISLAND, WA

QUANTUM JOB NUMBER: 19052.01

INDEX

DESIGN CRITERIA	2
GRAVITY FRAMING DESIGN	4
SPECIAL CONCRETE SHEAR WALL	6
RETAIN WALL DESIGN	16
ANCHOR BOLT -SIMPSON SB INTO STEM WALL	21
SHEAR WALL TRIBUTARY LOADS DIAGRAMS	28

STRUCTURAL DESIGN CRITERIA

LEE-BOYLE RESIDENCE 4150 78TH. AVE SE MERCER ISLAND, WA

QUANTUM JOB NUMBER: 19052.01

CODE CRITERIA:	
BUILDING CODE	
BUILDING DEPARTMENT	CITY OF MERCER ISLAND
WIND CRITERIA	110 MPH; EXPOSURE "C"
	RISK CATEGORY = II
	K _{ZT} = 1.00
SEISMIC ZONE	
	SITE CLASS = D
	R = 6.5
	$I_{E} = 1.0$
	$\dots S_s = 1.411, S_1 = 0.543$
	$\dots S_{\text{DS}} = 0.941, \ S_{\text{D1}} = 0.543$
SNOW LOAD	
DECK LIVE LOAD	
LIVE LOAD	
PHOTOVOLTAIC SOLAR PANEL DEAD LOAD	
SOILS CRITERIA:	
ALLOWABLE BEARING PRESSURE	
	CONTINUOUS: 18" MIN., ISOLATED: 24" MIN.
LATERAL EARTH PRESSURE (RESTRAINED/UNREST	(AINED)
TRAFFIC SURCHARGE PRESSURE (PASSENGER VEHIC	(LE)
COEFFICIENT OF FRICTION	0.40 PCF
MATERIALS GRITERIA:	
CUNCRETE (28 DAY STRENGTH):	
FOUNDATION/S.U.G	F C=2,500 F31
CRADE 60 (#5 BAR OR LARGER)	EV-60 000 PSI
	EV-40.000 PSI
WOOD FRAMING:	
2X 3X & 4X FRAMING MBRS	HF#2 OR DF#2
6X FRAMING MBRS	DF#1
I VI MEMBERS - BEAMS & HEADERS	2 N F I VI
LSL MEMBERS – BEAMS & HEADERS	1 55F I SI
WOOD SHTG	ΔΡΔ RΔTFD

STRUCTURAL STEEL:

WIDE-FLANGE SECTIONS: A-992	Fy=50,000 PSI
MISCELLANEOUS SECTIONS: A-36	Fv=36,000 PSI
TUBE SECTIONS: A-500	Fv=46.000 PSI
PIPE SECTIONS: A-53	Fv=35.000 PSI
WELDING	Fy=70,000 PSI

STRUCTURAL DESIGN CRITERIA

LEE-BOYLE RESIDENCE 4150 78TH. AVE SE MERCER ISLAND, WA

QUANTUM JOB NUMBER: 19052.01

ASSEMBLY WEIGHTS

ROOF LOADS		GRAVITY	SEISMIC	COMMENTS
STANDARD MEMBRANE ROOFING 15/32" PLYWOOD SHEATHING 14 "TJI ROOF JOIST @ 16" O.C. INSULATION LIGHTS & DUCTS 5/8" GWB MISCELLANEOUS PV SOLAR PANELS		3.0 PSF 1.7 PSF 3.0 PSF 1.5 PSF 1.0 PSF 2.8 PSF 1.0 PSF 5.0 PSF	3.0 PSF 1.7 PSF 3.0 PSF 1.5 PSF 1.0 PSF 2.8 PSF 0.0 PSF 5.0 PSF	
	ROOF DL	19.0 PSF	18.0 PSF	SL = 25 PSF
FLOOR LOAD				
HARDWOOD FLOORING 23/32" PLYWOOD SHEATHING FLOOR JOISTS @ 16" O.C. 5/8" GWB LIGHTS, DUCTS MISCELLANEOUS INSULATION	FLOOR DL	4.0 PSF 2.3 PSF 3.4 PSF 2.8 PSF 1.0 PSF 1.0 PSF 0.5 PSF 15.0 PSF	4.0 PSF 2.3 PSF 3.4 PSF 2.8 PSF 1.0 PSF 0.0 PSF 0.5 PSF 14.0 PSF	LL = 40 PSF
EXTERIOR WALL LOAD				
SIDING 15/32"PLYWOOD SHEATHING 2X6 STUDS @ 16"O.C. INSULATION 5/8" GWB MISCELLANEOUS	WALL DI	3.0 PSF 1.7 PSF 1.7 PSF 1.8 PSF 2.8 PSF 1.0 PSF 12.0 PSF	3.0 PSF 1.5 PSF 1.7 PSF 1.8 PSF 2.8 PSF 0.0 PSF 11.0 PSF	

INTERIOR PARTITIONS	8.0	PSF
EXTERIOR GLAZING	8.0	PSF

SEA	TTLE, WA 98101	
TEL	206.957.3900	1-
FAX	206.957.3901	21
www	.quantumce.com	client

STUART

checked by

ARCH

SOLUTIONS REPORT

Upper Level, UJ2: Master Bed Current Solution: 1 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Floor
Member Reaction (lbs)	2300 @ 5 1/2"	2300 (1.75")	Passed (100%)		1.0 D + 1.0 L (All Spans)	Member Type : Joist
Shear (lbs)	2215 @ 1' 7 1/2"	4655	Passed (48%)	1.00	1.0 D + 1.0 L (All Spans)	Building Code : IBC 2015
Moment (Ft-lbs)	11842 @ 9' 1 15/16"	12614	Passed (94%)	1.00	1.0 D + 1.0 L (All Spans)	Design Methodology : ASE
Live Load Defl. (in)	0.268 @ 10' 10"	0.519	Passed (L/928)		1.0 D + 1.0 L (All Spans)	
Total Load Defl. (in)	1.049 @ 10' 4 5/8"	1.038	Passed (L/237)		1.0 D + 1.0 L (All Spans)	
TJ-Pro [™] Rating	48	45	Passed			

All Product Solution	S				
Depth	Series	Plies	Spacing	TJ-Pro [™] Rating	Wood Volume
14"	1 3/4" 2.0E Microllam® LVL	1	16"	48	3.06

The purpose of this report is for product comparison only. Load and support information necessary for professional design review is not displayed here. Please print an individual Member Report for submittal purposes.

ForteWEB Software Operator	Job Notes
Travis Michaud OCE (603) 953-3921 tmichaud@quantumce.com	

÷

Results Summary						
Load Combination	Factored	Factored	Factored	Mu	phiMn	Vi
	Axial	Moment	Shear			
	(k)	(ft·k)	(k)	(ft·k)	(ft·k)	(k)
1.4D 1.2D + 1.6L + 0.5S	65.1 137.2	0	0	0	18593	0
1 2D + 1 6l	126	0	0	0	20975	0
1.2D + 0.5L + 1.6S	113.4	õ	ŏ	ŏ	20055	0
1.2D + 1.6S + 0.5W	91.48	0	6.1	54.9	19204	6.1
1.2D + 1.6S	91.48	0	0	0	19204	0
1.2D + 0.5W	55.8	0	6.1	54.9	17822	6.1
1.2D + 0.5L + 0.5S + 1.0W	88.9	0	12.2	109.8	19104	12.2
1.2D + 0.5L + 1.0W	77.75	ŏ	12.2	109.8	18672	12.2
1.2D + 0.5S + 1.0W	66.95	Ō	12.2	109.8	18254	12.2
1.2D + 0.5S	66.95	0	0	0	18254	0
1.2D + 1.0W	55.8	0	12.2	109.8	17822	12.2
(1.2 + 0.25ds)D + 0.5L + 0.25 + 1.0E	90.95	0	13.1	117.9	18120	13.1
1.2D + 0.5L + 0.2S	82.21	õ	0	0	18845	13.1
(1.2 - 0.2Sds)D + 0.5L + 1.0E	69.01	Õ	13.1	117.9	17947	13.1
(1.2 + 0.2Sds)D + 0.5L + 1.0E	86.49	0	13.1	117.9	19398	13.1
1.2D + 0.5L	77.75	0	0	0	18672	0
(1.2 + 0.2505)D + 0.25 + 1.0E	51.52	0	13.1	117.9	1/269	13.1
1.2D + 0.2S	60.26	õ	0	0	17995	13.1
(1.2 - 0.2Sds)D + 1.0E	47.06	õ	13.1	117.9	17096	13.1
(1.2 + 0.2Sds)D + 1.0E	64.54	0	13.1	117.9	18547	13.1
1.2D	55.8	0	0	0	17822	0
(0.9D + 1.000)	41.85	0	12.2	109.8	16664	12.2
(0.9 + 0.2Sds)D + 1.0E	50.59	ő	13.1	117.9	17390	13.1
0.9D	41.85	ŏ	0	0	16664	0
Load Combination	phiVn	phiV	c	Vs	Pu	phiPn
	(k)	()	;)	(k)	(k)	(k)
1.4D 1.2D + 1.6L + 0.66	759	524.	8	390.4	139.4	8248
1 2D + 1 6L	765.1	530. 530.	Z R	390.4 390.4	200.9	8248
1.2D + 0.5L + 1.6S	763.6	529.3	3	390.4	177.1	8248
1.2D + 1.6S + 0.5W	760.9	526.	7	390.4	155.2	8248
1.2D + 1.6S	760.9	526.	7	390.4	155.2	8248
1.2D + 0.5W	756.6	522.4	4	390.4	119.5	8248
1.2D + 0.5L + 0.5S + 1.0W	760.6	526.4	+ 1	390.4	152.6	8248
1.2D + 0.5L + 1.0W	759.3	525	5	390.4	102.0	8248
1.2D + 0.5S + 1.0W	758	523.	7	390.4	130.6	8248
1.2D + 0.5S	758	523.	7	390.4	130.6	,8248
1.2D + 1.0W	756.6	522.4	1	390.4	119.5	8248
(1.2 - 0.2Sds)D + 0.5L + 0.2S + 1.0E (1.2 + 0.2Sds)D + 0.5L + 0.2S + 1.0E	/5/.6 762.1	523.3	5	390.4	127.2	8248
1.2D + 0.5L + 0.2S	759.8	525.6	5	390.4	145.9	0240 8248
(1.2 - 0.2Sds)D + 0.5L + 1.0E	. 757	522.8	3	390.4	122.7	8248
1.2 + 0.2Sds)D + 0.5L + 1.0E	761.5	527.3	3	390.4	160.2	8248
1.2D + 0.5L	759.3	525		390.4	141.4	8248
r.z - 0.2Sds)D + 0.2S + 1.0E 1.2 + 0.2Sds)D + 0.2S + 1.0E	/54.9 750 /	520.7	,)	390.4	105.2	8248
1.2D + 0.2S	757.2	522.9)	390.4	142.7	8248 8248
1.2 - 0.2Sds)D + 1.0E	754.4	520.2		390.4	100.8	8248
1.2 + 0.2Sds)D + 1.0E	758.9	524.6	5	390.4	138.2	8248
.2D	756.6	522.4		390.4	119.5	8248
1.9D + 1.0W 0.9 - 0.2Sdo)D + 1.0E	753.1	518.8		390.4	89.61	8248
0.9 + 0.2Sds)D + 1.0E	750.8	516.0)	390.4	/0.89	8248
).9D	753.1	518.8	•	390.4	89.61	o∠48 8248
		0.010			00.01	02-10

Page 2 of 10

Single Curtain Wall 1 Grid line E -8" concrete Basement wall

Check for Need (ACI 318-14 18.10.6.1, 18.10.6.2)

 $\frac{h_W}{l_W} = \frac{(9 \text{ ft})}{(61 \text{ ft})} = 0.1475 < 2.0$ ∴ Special boundary elements are not required

∴ Special boundary elements are not required **Transverse Reinforcement General Requirements (ACI 318-14 18.10.6.4e, 18.7.5.2a-e)**

Transverse reinforcement is detailed as rectilinear hoops with crossties. Bends of rectilinear hoops and crossties are detailed to engage peripheral longitudinal bars. Consecutive crossties are detailed to alternate end to end. Ties are No. 4 or larger Corner and alternate longitudinal bars are laterally supported by tie corners. No unsupported bar is further than 6 in. from a laterally supported bar. Per 18.10.6.4e, h_x is also limited to two thirds of the boundary element thickness. $\frac{2}{3}$ t_{BE} = $\frac{2}{3}$ (0 in) = 0 in h_{x, max} = 0 in

 $h_x = -0.14$ in $\leq h_{x_{max}} = 0$ in \checkmark

Job # Lee Boyle R ...

Special Boundary Element Checks (continued)

Page 5 of 10

Ordinary Boundary Element Checks

Ordinary Boundary Elements ('Where SBEs are not required')

The regions of special detailing discussed in 18.10.6.5 "where special boundary elements are not required" are not given a name by the ACI code, but following a convention from NEHRP documents this software will generally refer to these areas as Ordinary Boundary Elements (OBEs).

Check Ordinary Boundary Element Requirements (ACI 318-14 18.10.6.5)

 $\begin{array}{ll} 18.10.6.5 \ (a): \\ p_{wb} = \frac{n_{bars} \, A_b}{A_{wb}} = \frac{(1.0) \, (0.2 \ in^2)}{(0.67 \ ft^2)} = \ 0.0021 \qquad (\rho \ at \ the \ wall \ boundary) \\ p_{wb_limit} = \ 400 \ / \ f_y = \ 400 \ / \ (40000 \ psi) = \ 0.010 \\ p_{wb} = \ 0.0021 \ \leq \ p_{wb_limit} = \ 0.010 \\ Therefore \ 18.7.5.2 \ (a) \ through \ (e) \ need \ not \ be \ satisfied \\ 18.10.6.5 \ (b): \\ V_u = \ 13.1 \ k \qquad (most \ extreme \ seismic \ case) \\ V_u = \ 13.1 \ k \qquad (most \ extreme \ seismic \ case) \\ V_u = \ 13.1 \ k \qquad (most \ extreme \ seismic \ case) \\ \end{array}$

Horizontal reinforcement termination restrictions do not apply

Page 6 of 10

Shear Check

Shear Capacity (ACI 318-14 11.5.4, 18.10.4, 21.2)

 $\lambda = 1.0$ (normal weight concrete) $d = 0.8 I_w = 0.8 (61 \text{ ft}) = 48.8 \text{ ft}$ (d) $V_c = 3.3 \lambda \sqrt{F'_c} h d + \frac{N_u d}{4 l_w} = 3.3 (1.0) \sqrt{3000 \text{ psi}} (0.67 \text{ ft}) (48.8 \text{ ft}) + \frac{(70.89 \text{ k}) (48.8 \text{ ft})}{4 (61 \text{ ft})} = 860.9 \text{ k}$ $\frac{M_u}{V_u} - \frac{I_w}{2} = \frac{(58.95 \text{ ft} \cdot k)}{(13.1 \text{ k})} - \frac{(61 \text{ ft})}{2} = -26 \text{ ft}$...less than zero, so eqn (e) does not apply Note: Mu in table 11.5.4.6 eqn (e) is at critical section per 11.5.4.7 $V_c = 860.9 \text{ k} \longrightarrow \text{fesser of table 11.5.4.6 (d) and (e)}$ $V_{s} = \frac{A_{v} f_{yt} d}{2} = \frac{(0.2 \text{ in}^{2}) (40000 \text{ psi}) (48.8 \text{ ft})}{(42 \text{ in})} = 390.4 \text{ k}$ (12 in) S2 $V_n = V_c + V_s = (860.9 \text{ k}) + (390.4 \text{ k}) = 1251 \text{ k}$ $\rho_{t} = \frac{A_{s_trans}}{A_{g_trans}} = \frac{(4 \text{ in}^{2})}{(40.67 \text{ ft}^{2})} = 0.0007$ $V_{n_{max}} = A_{cv} \left(\alpha_{c} \lambda \sqrt{F'_{c}} + \rho_{t} f_{y} \right) = (40.67 \text{ ft}^{2}) \left[(3.0) (1.0) \sqrt{3000 \text{ psi}} + (0.0007) (40000 \text{ psi}) \right] = 1122 \text{ k}$ $V_{n max} = 8 A_{cv} \sqrt{F'_{c}} = 8 (40.67 \text{ ft}^2) \sqrt{3000 \text{ psi}} = 2566 \text{ k}$ $\phi V_n = \phi V_n = (0.60)(1251 \text{ k}) = 750.8 \text{ k}$ $\phi V_c = \phi V_c = (0.60)(860.9 \text{ k}) = 516.6 \text{ k}$ $\phi V_{n_max} = \phi \ 10 \ \sqrt{F'_c} \ h \ d = (0.60) \ 10 \ \sqrt{3000} \ psi \ (0.67 \ ft) \ (48.8 \ ft) = 1540 \ k$ $\phi V_n = 750.8 \, k \geq V_u = 13.1 \, k$

Page 7 of 10

Shear Capacity (ACI 318-14 11.5.4, 18.10.4, 21.2)

$$\begin{split} \lambda &= 1.0 \qquad (\text{normal weight concrete}) \\ d &= 0.8 \ I_w &= 0.8 \ (61 \ ft) = 48.8 \ ft \\ (d) \ V_c &= 3.3 \ \lambda \sqrt{Fr_c} \ h \ d + \frac{N_u \ d}{4 \ I_w} = 3.3 \ (1.0) \ \sqrt{3000 \ psi} \ (0.67 \ ft) \ (48.8 \ ft) + \frac{(200.9 \ k) \ (48.8 \ ft)}{4 \ (61 \ ft)} = 886.9 \ k \\ \hline \frac{M_u}{V_u} \ \frac{I_w}{2} &= \frac{(0 \ ft \ k)}{(0 \ k)} - \frac{(61 \ ft)}{2} = INF \\ ... less than zero, so eqn \ (e) \ does not apply \\ V_c &= 886.9 \ k \qquad \rightarrow lesser of table 11.5.4.6 \ (d) \ and \ (e) \\ V_s &= \frac{A_v \ f_t \ d}{s_2} = \frac{(0.2 \ in^2) \ (40000 \ psi) \ (48.8 \ ft)}{(12 \ in)} = 390.4 \ k \\ \phi V_n &= \phi \ (V_c + V_s) = \ (0.60) \ (886.9 \ k) + (390.4 \ k)] = 766.4 \ k \\ \phi V_c &= \phi \ V_c = (0.60) \ (886.9 \ k) = 532.2 \ k \\ \phi V_n \ max = \phi \ 10 \ \sqrt{Fr_c} \ h \ d = \ (0.60) \ 10 \ \sqrt{3000 \ psi} \ (0.67 \ ft) \ (48.8 \ ft) = 1540 \ k \\ \phi V_n &= 766.4 \ k \ \geq V_u = 0 \ k \qquad \checkmark$$

Page 8 of 10

Splice/Development Calcs

Vertical Wall Bars

Straight Development Length (ACI 318-14 18.10.2.3», 25.4.2)

 $\begin{array}{ll} \psi_t = 1.0 & (\text{bars are not horizontal}) \\ \psi_e = 1.0 & (\text{bar not epoxy coated}) \\ \psi_s = 0.80 & (\text{bars are #6 or smaller}) \\ \lambda = 1.0 & (\text{normal weight concrete}) \\ \cdot s / 2 = (12 \text{ in}) / 2 = 6 \text{ in} \\ \text{cover } + d_b / 2 = (3.5 \text{ in}) + (0.5 \text{ in}) / 2 = 3.75 \text{ in} \\ c_b = 3.75 \text{ in} & (\text{lesser of half spacing, ctr to surface}) \\ K_{tr} = 0.0 & (\text{no transverse reinforcement}) \\ \hline \frac{c_b + K_{tr}}{d_b} = \frac{-(3.75 \text{ in}) + (0.0)}{(0.5 \text{ in})} = 7.50 \end{array}$

$$I_{d} = \left(\frac{3.}{40} \frac{f_{y}}{\lambda \sqrt{F'_{c}}} \frac{\psi_{1} \psi_{e} \psi_{s}}{2.5}\right) d_{b} = \left[\frac{3.}{40} \frac{(40000 \text{ psi})}{(1.0) \sqrt{3000 \text{ psi}}} \frac{(1.0) (1.0) (0.80)}{2.5}\right] (0.5 \text{ in}) = 8.76 \text{ in}$$

12 inch minimum controls Note: Multiply by 1.25 where yielding is likely to occur per ACI 18.10.2.3b

Splice Length, Class B (ACI 318-14 18.10.2.3», 25.5.2)

 $l_{lap}=1.3~l_d=1.3~(12~in)~=~15.6~in$ Note: Multiply by 1.25 where yielding is likely to occur per ACI 18.10.2.3b

Horizontal Wall Bars

Straight Development Length (ACI 318-14 18.10.2.3», 25.4.2)

 $\begin{array}{ll} \psi_t = 1.0 & (\text{cannot assume 12 inches of fresh concrete cast below)} \\ \psi_e = 1.0 & (\text{bar not epoxy coated}) \\ \psi_s = 0.80 & (\text{bars are #6 or smaller}) \\ \lambda = 1.0 & (\text{normal weight concrete}) \\ s/2 = (12 \text{ in})/2 = 6 \text{ in} \\ \text{cover} + d_b/2 = (3 \text{ in}) + (0.5 \text{ in})/2 = 3.25 \text{ in} \\ \text{cb} = 3.25 \text{ in} & (\text{lesser of half spacing, ctr to surface}) \\ K_{tr} = 0.0 & (\text{no transverse reinforcement}) \\ \hline \frac{c_b + K_{tr}}{d_b} = \frac{(3.25 \text{ in}) + (0.0)}{(0.5 \text{ in})} = 6.50 \\ I_d = \left(\frac{3}{40} \frac{f_y}{\lambda \sqrt{F_c}} \frac{\psi_t \psi_B \psi_s}{2.5}\right) d_b = \left[\frac{3}{40} \frac{(40000 \text{ psi})}{(1.0) \sqrt{3000 \text{ psi}}} \frac{(1.0)(1.0)(0.80)}{2.5}\right] (0.5 \text{ in}) = 8.76 \text{ in} \end{array}$

12 inch minimum controls

QuickConcreteWall 5.0 (iesweb.com)

Note: Multiply by 1.25 where yielding is likely to occur per ACI 18.10.2.3b

Splice Length, Class B (ACI 318-14 18.10.2.3», 25.5.2)

 I_{lap} = 1.3 I_d = 1.3 (12 in) = 15.6 in Note: Multiply by 1.25 where yielding is likely to occur per ACI 18.10.2.3b

Splice/Development Calcs (continued)

Column Longitudinal Bars

No calcs to display - wall has no columns

Seismic, E

1.000

This Wall in File: m:\stuart silk\19052.01_lee-boyle residence\calculations\lateral design\5.6 ft re

RetainPro (c) 1987-2018; Bu License : KW-06057394 License To : QUANTUM	ild 11.18.06.30	Cantilevered Reta	ining	Wall	Code: IBC 20	15,ACI 318-14,ACI 530-13
Criteria		Soil Data				
Retained Height Wall height above soil Slope Behind Wall Height of Soil over Toe Water height over heel	= 5.00 ft = 0.50 ft = 0.00 = 0.00 in = 0.0 ft	Allow Soil Bearing = Equivalent Fluid Pressure = Active Heel Pressure = Passive Pressure = Soil Density, Heel = Soil Density, Toe = Footing Soil Friction = Soil height to ignore for passive pressure	2,500 ethod 35 300 120.0 120.0 0.40	0 psf 0 psf/ft 0 psf/ft 0 pcf 0 pcf 00 0 in		
Surcharge Loads		Lateral Load Applied	to Ster	n 📕	Adjacent Footin	ng Load
Surcharge Over Heel Used To Resist Sliding Surcharge Over Toe Used for Sliding & Ove Axial Load Applie Axial Dead Load Axial Live Load Axial Load Eccentricity	= 0.0 psf g & Overturning = 0.0 psf erturning d to Stem = 0.0 lbs = 0.0 lbs = 0.0 in	Lateral Load = Height to Top = Height to Bottom = Load Type = V (3 Wind on Exposed Stem = (Service Level)	0.0 0.00 0.00 Vind (W) Service 0.0	#/ft ft) Level) psf	Adjacent Footing Loa Footing Width Eccentricity Wall to Ftg CL Dist Footing Type Base Above/Below S at Back of Wall Poisson's Ratio	ad = 0.0 lbs = 0.00 ft = 0.00 in = 0.00 ft Line Load Soil = 0.0 ft = 0.300
Earth Pressure So Method : Uniform Multiplier Used (Multiplier used on soil of	eismic Load = 6.000 density)	Uniform Seismic Force = Total Seismic Force = 2	36.000 216.000			
Design Summary		Stem Construction	-	2nd	Bottom	
Wall Stability Ratios Overturning Slab Resist	= 1.59 OK s All Sliding !	Design Height Above I Wall Material Above "H Design Method Thickness	Ftç ft = - t" = =	Stem Ok 2.75 Concrete LRFD 8.00	 Stem OK 0.00 Concrete LRFD 8.00 	
l otal Bearing Load resultant ecc.	= $1,588 \text{ lbs}$ = 8.92 in = $1.674 \text{ psf} \text{ OK}$	Rebar Size Rebar Spacing Rebar Placed at	=	# 4 12.00 6 in	4 # 4) 12.00 n 6 in	
Soil Pressure @ Heel Allowable Soil Pressure Less	= 0 psf OK $= 2,500 psf$ Than Allowable $= 2,344 psf$	Design Data fb/FB + fa/Fa Total Force @ Sectio Service Level	= n lbs =	0.056	ô 0.459	
ACI Factored @ Heel Footing Shear @ Toe	= 0 psf = 5.4 psi OK	Strength Level MomentActual Service Level	lbs = ft-# =	222.8	880.0	
Allowable Sliding Calcs	= 7.6 psi UK = 75.0 psi	Strength Level MomentAllowable	ft-# = ft-# =	197.4 3,521.3	1,616.7 3,521.3	
Lateral Sliding Force	= 781.2 lbs	ShearActual Service Level Strength Level ShearAllowable	psi = psi = psi =	3.1 82.2	12.2 82.2	
		Anet (Masonry) Rebar Depth 'd'	in2 = in =	6.00	6.00	
Vertical component of activ considered in the calculatic	re lateral soil pressure l on of soil bearing pressu	Masonry Data fm Fs Solid Grouting S Modular Ratio 'n' ures. Wall Weight	psi = psi = = psf =	100.0	100.0	
Load Factors Building Code Dead Load Live Load Earth, H	IBC 2015,ACI 1.200 1.600 1.600	Short Term Factor Equiv. Solid Thick. Masonry Block Type Masonry Design Metho Concrete Data	= = od =	Medium V ASD	Veight	
Wind, W Seismic, E	1.000	fc Fy	psi = psi =	3,000.0 40,000.0	3,000.0 40,000.0	

This Wall in File: m:\stuart silk\19052.01_lee-boyle residence\calculations\lateral design\5.6 ft re

RetainPro (c) 1987-2018, Build 11.18.06.30 License : KW-06057394 License To : QUANTUM CONSULTING	Cantilevered	Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
Concrete Stem Rebar Area De	tails		
2nd Stem	Vertical Reinforcing	Horizontal Reinforcing	
As (based on applied moment) :	0.0116 in2/ft	5	
(4/3) * As :	0.0154 in2/ft	Min Stem T&S Reinf Are	a 0.528 in2
200bd/fy : 200(12)(6)/40000	0.36 in2/ft	Min Stem T&S Reinf Are	a per ft of stem Height : 0.192 in2/ft
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft	Horizontal Reinforcing O	otions :
	**********	One layer of : Two la	evers of :
Required Area :	0.1728 in2/ft	#4@ 12.50 in #4@	25.00 in
Provided Area :	0.2 in2/ft	#5@ 19.38 in #5@	38.75 in
Maximum Area :	1.4631 in2/ft	#6@ 27.50 in #6@	55.00 in
Bottom Stem	Vertical Reinforcing	Horizontal Reinforcing	
As (based on applied moment) :	0.0949 in2/ft		
(4/3) * As :	0.1265 in2/ft	Min Stem T&S Reinf Area	a 0.528 in2
200bd/fy : 200(12)(6)/40000 :	0.36 in2/ft	Min Stem T&S Reinf Area	a per ft of stem Height : 0.192 in2/ft
0.0018bh : 0.0018(12)(8)	0.1728 in2/ft	Horizontal Reinforcing Op	otions :
		One layer of : Two la	yers of :
Required Area :	0.1728 in2/ft	#4@ 12.50 in #4@	25.00 in
Provided Area :	0.2 in2/ft	#5@ 19.38 in #5@	38.75 in
Maximum Area :	1.4631 in2/ft	#6@ 27.50 in #6@	55.00 in
Footing Dimensions & Stren	gths Footing De	sign Results	
Toe Width=1Heel Width=1Total Footing Width=2Footing Thickness=12Key Width=0Key Depth=0Key Distance from Toe=0fc =2,500 psiFy =40,0Footing Concrete Density=150	.04 ft Factored Pressure .71 Factored Pressure .75 Mu' : Upward .00 in Mu' : Downward .00 in Actual 1-Way Sheat .00 in Allow 1-Way Sheat .00 ft Toe Reinforcing .00 psi Heel Reinforcing .00 pcf Key Reinforcing	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>I</u> 0 psf 1 ft-# 8 ft-# 7 ft-# 3 psi 0 psi
Min. As % = 0.00 Cover @ Top 2.00 @ Btm.=	18 3.00 in Toe: Not req'd Heel: Not req'd Key: No key d	e Sizes & Spacings : Mu < phi*5*lambda*sqrt(fo : Mu < phi*5*lambda*sqrt(fo efined)*Sm)*Sm
	Min footing T&S Min footing T&S If one layer of h #4@ 9.26 in #5@ 14.35 in #6@ 20.37 in	S reinf Area 0.7 S reinf Area per foot 0.2 orizontal bars: If two #4@ #5@ #6@	1 in2 6 in2 /ft layers of horizontal bars: 0 18.52 in 0 28.70 in 0 40.74 in

This Wall in File: m:\stuart silk\19052.01_lee-boyle residence\calculations\lateral design\5.6 ft re

RetainPro (c) 1987-2018, Build 11.18.06.30 License : KW-06057394 License To : QUANTUM CONSULTING ENGINEERS

Cantilevered Retaining Wall

Code: IBC 2015, ACI 318-14, ACI 530-13

Summary of Overturning & Resisting Forces & Moments

		OV		G			F	ESISTING	Mamont
ltem		lbs	ft	ft-#			lbs	ft	ft-#
Heel Active Pressure	=	630.0	2.00	1,260.0	Soil Over Heel	=	625.1	2.23	1,393.7
Surcharge over Heel	=				Sloped Soil Over Hee	=			
Surcharge Over Toe	=				Surcharge Over Heel	=			
Adjacent Footing Load	=				Adjacent Footing Load	=			
Added Lateral Load	=				Axial Dead Load on Ste	em =			
Load @ Stem Above Soil	! =				* Axial Live Load on Ster	n =			
Seismic Earth Load	=	151.2	3.00	453.6	Soil Over Toe	=			
	=				Surcharge Over Toe	=			
Total	_	791 2	OTM	1 712 6	Stem Weight(s)	=	550.0	1.38	756.4
IOlai		101.2	O.T.IM.	1,713.0	Earth @ Stem Transitio	ns=			
	=		=		Footing Weight	=	412.6	1.38	567.4
Resisting/Overturning	Rati	o	=	1.59	Key Weight	=			
Vertical Loads used fo	r Soi	Pressure :	= 1,587	.7 lbs	Vert. Component	=		2.75	
					To	tal =	1,587.7	lbs R.M.=	2,717.4

If seismic is included, the OTM and sliding ratios be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201

calculation of Overturning Resistance.

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS considered in the

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Horizontal Defl @ Top of Wall (approximate only)

Soil Spring Reaction Modulus

0.093 in

250.0 pci

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,

because the wall would then tend to rotate into the retained soil.

Home > Connectors > Wood Construction Connectors > Concrete Connectors and Anchors > Anchor Bolts and Related Products > Bolts

SB Anchor Bolt 💕

 None. May be ordered HDG; contact Simpson Strong-Tie.

Installation

- SB is only for concrete applications poured monolithically except where noted.
- Top nuts and washers for holdown attachment are not supplied with the SB; install standard nuts, couplers and/or washers as required.
- On HDG SB anchors, chase the threads to use standard nuts or couplers or use overtapped products in accordance with ASTM A563, for example Simpson Strong-Tie NUT5/8-OST, NUT7/8-OST and NUT1-OST, CNW5/8-OST, CNW7/8-OST and CNW1-OST.
- Install SB before the concrete pour using AnchorMate[®] anchor bolt holders. Install the SB per the plan view detail.
- Minimum concrete compressive strength is 2,500 psi.
- When rebar is required it does not need to be tied to the SB.

Related Links

- Wood Construction Connectors Technical and Installation Notes
- General Notes
- Corrosion Information
- Contact Simpson Strong-Tie

On This Page

2015 and 2018 International Building Code[®] Resources
 Portal

Catalog Pages

<u>C-C-2019 (Wood Construction Connectors), pages</u>
 <u>32–34</u>

Wood Construction Connectors 2019-2020

C-C-2019 - Catalog

A catalog including new product information as well as any applicable specification and installation instructions for wood-to-wood and wood-to-concrete structural connectors.

Conectores para la construcción con madera 2019-2020

C-C-2019SP - Catalog

El catálogo incluye información sobre nuevos productos, así como especificaciones e instrucciones de instalación aplicables para conectores estructurales de madera a madera y de madera a concreto.

Load Tables

SB Bolts at Stemwall

These products are available with <u>additional corrosion protection</u>. Additional products on this page may also be available with this option, <u>check with Simpson Strong-Tie</u> for details.

		C	imens	ions (in.)		Allowable Tension Loads					
	Model No.	Stemwall	Die.	Laurath	Min. Embed. (l _e)	Wind and SDC A&B			SDC C-F		
		Width	Dia.	Length		Midwall	Corner	End Wall	Midwall	Corner	End Wall
Þ	SB5/8X24	6	5%	24	18	6,675	6,550	6,550	6,675	5,730	5,730
8	SB7/8X24	8	7∕a	24	18	10,055	8,980	6,550	8,795	7,855	5,730
6	SB1X30	8	1	30	24	13,110	9,505	6,930	11,470	8,315	6,065

- 1. Rebar is required at the top of stem wall foundations, but is not required for slab-on-grade edge and garage curb, or stem wall garage front installations.
- 2. Minimum end distances for SB bolts are as shown in graphics.
- 3. To obtain LRFD values, multiply ASD seismic load values by 1.4 and wind load values by 1.67 (1.6 for 2012 IBC).
- 4. Per Section 1613 of the IBC, detached one- and twostory dwellings in SDC C may use "Wind and SDC A&B" allowable loads.

Typical SB Installation

- 5. Midwall loads apply when anchor is 1.5 I_e or greater from the end. For bolts acting in tension simultaneously, the minimum bolt center-to-center spacing is 3 I_e.
- 6. Full catalog loads apply for two-pour installation for slabon-grade: edge.

Stemwall Plan Views

SB Bolts at Stemwall: Garage Front

These products are available with <u>additional corrosion protection</u>. Additional products on this page may also be available with this option, <u>check with Simpson Strong-Tie</u> for details.

		Dimensi	ons (in.)			Allowable	Tension Loads	
Model No.	Stemwall	Diamatar	Longth	Min.	Wind and S	DC A&B	SDC C	-F
	Width	Diameter	Lengui	(l _e)	Step-Down End	Corner	Step-Down End	Corner
SB7/8X24	8	7⁄8	24	18	6,935	7,355	6,070	6,435
SB1X30	8	1	30	24	10,850	9,400	9,495	8,030

- 1. Rebar is required at the top of stem wall foundations, but is not required for slab-on-grade edge and garage curb, or stem wall garage front installations.
- 2. Minimum end distances for SB bolts are as shown in graphics.
- 3. To obtain LRFD values, multiply ASD seismic load values by 1.4 and wind load values by 1.67 (1.6 for 2012 IBC).
- 4. Per Section 1613 of the IBC, detached one- and two-story dwellings in SDC C may use "Wind and SDC A&B" allowable loads.
- 5. Midwall loads apply when anchor is 1.5 l_e or greater from the end. For bolts acting in tension simultaneously, the minimum bolt center-to-center spacing is 3 l_e.

Re: Concrete Stemwall Anchor Reinforcement for Simpson Strong-Tie® Strong-Wall® Shearwall Anchorage

To Whom It May Concern:

Typical anchorage solutions for Simpson Strong-Tie Strong-Wall shearwalls in concrete stemwall applications require the anchor bolt to be embedded in the footing beneath the stemwall. In certain cases, such as daylight/walkout basements or other tall stemwall applications, this requirement may result in installation challenges or additional expense. As an alternative, Simpson Strong-Tie has developed anchorage solutions for concrete stemwall applications using anchor reinforcement. This allows the Strong-Wall anchor bolt to terminate in the stemwall which eliminates the need for the anchor to extend into the footing.

When anchor reinforcement is included and developed on both sides of the breakout surface, evaluation of the concrete breakout strength is not required per ACI 318-14 Section 17.4.2.9. All other limit states defined in ACI 318-14 Table 17.3.1.1 are required and used to determine anchor strength. Additionally, all seismic design requirements defined in ACI 318-14 Section 17.2.3 have been satisfied.

Stemwall anchor reinforcement solutions for the Steel Strong-Wall (SSW) and Strong-Wall Wood Shearwall (WSW) are presented in Table 1 and Figures 1-5. Table 2 provides the required standard or high strength anchor model for each bolt diameter and corresponding Strong-Wall shearwall model. High strength anchor bolts are required for the SSW and WSW when the anchor tension force exceeds the allowable load for standard strength anchor bolts and for the SSW12 when the seismic shear multiplied by the shearwall height exceeds 61.6 k.-in.

Solutions provided herein have been developed for cases where the Strong-Wall shearwall is located at the edge of concrete or at the inside face of a 2x6 framed wall. Table 3 provides minimum required distances from edge of concrete to center of Strong-Wall anchor bolt for both cases. Two anchor reinforcement development configurations have also been considered. The first may apply for shorter concrete stemwalls with or without a cold joint between the stemwall and footing. In this case, a lap splice and standard hook are used to develop the anchor reinforcement below the breakout surface as shown in Figure 3. The second configuration applies for taller stemwalls and uses continuous anchor reinforcement below the breakout surface as shown in Figure 4. Note the Strong-Wall shearwall may be located either at the edge of concrete or at the inside face of a 2x6 framed wall for both anchor reinforcement development configurations. In all cases, a minimum 8-inch-thick concrete stemwall with a compressive strength of 2,500 psi is required. In some applications, depending upon the anchor bolt diameter and grade and Strong-Wall location, concrete compressive strengths above 2,500 psi and up to 4,500 psi are required. See following anchor reinforcement solutions for additional details.

The information in this letter is valid until **12/31/2019** when it will be re-evaluated by Simpson Strong-Tie. Please visit <u>strongtie.com</u> for additional pertinent information. If you have questions or need further assistance regarding this matter, please contact the Simpson Strong-Tie engineering department at 800.999.5099.

Sincerely,

SIMPSON STRONG-TIE COMPANY INC.

			Strong-Wall Panel Location ¹⁰						
Design Criteria	Anchor			Edge of Concret	e	Flush w	ith Inside Face of	f 2x6 Wall	
	Diameter (in.)	Anchor Strength⁵	ASD Allowable Tension (lb.)	Minimum Concrete Strength, f'c (psi) ⁴	Anchor Reinforcement Schedule ³	ASD Allowable Tension (lb.)	Minimum Concrete Strength, f'c (psi) ⁴	Anchor Reinforcement Schedule ³	
	2/4	Standard	9,600	2,500	(2) # 4	9,600	2,500	(2) # 4	
	3/4	High Strength		NS		19,900	2,500	(6) # 4	
Colomich	7/0	Standard	12,300	<u>3,500</u>	(4) # 4	13,100	2,500	(4) # 4	USED
Seismic	//8	High Strength	NS			24,400	<u>3,000</u>	(6) # 4	
	1	Standard		NS		17,100	2,500	(4) # 4	USED
	1	High Strength	NS			32,500	<u>4,500</u>	(8) # 4	
		Standard	9,600	2,500	(2) # 4	9,600	2,500	(2) # 4	
	2/4	High Strength	10,800	2,500	(2) # 4	10,800	2,500	(2) # 4	
	3/4		13,800	<u>3,000</u>	(4) # 4	19,900	2,500	(4) # 4	
			16,900	<u>4,500</u>	(4) # 4		-		
		Chandard	10,800	2,500	(2) # 4	10,800	2,500	(2) # 4	
		Standard	13,000	<u>3,000</u>	(4) # 4	13,100	2,500	(4) # 4	
Wind ⁷	7/8		15,900	<u>4,500</u>	(4) # 4	21,600	2,500	(4) # 4	
winu		High Strength				25,400	2,500	(6) # 4	
				113		27,100	<u>3,000</u>	(6) # 4	
1		Standard		NC		10,800	2,500	(2) # 4	
		Stanuaru		112		17,100	2,500	(4) # 4	
	1					21,600	2,500	(4) # 4	
		High Strength	NS			27,700	2,500	(6) # 4	
						32,400	<u>3,500</u>	(6) # 4	

Table 1: Strong-Wall Concrete Stemwall Anchorage Solutions with Anchor Reinforcement^{1,2}

1. Anchorage designs conform to ACI 318-14 with reinforcement used to develop the tension anchorage in cracked and uncracked concrete.

2. Anchor reinforcement has been designed in accordance with ACI 318-14 Section 17.4.2.9 and shall be developed on both sides of the breakout surface.

3. Anchor reinforcement schedule is per anchor bolt and shall be ASTM A615 Grade 60 No. 4.

4. Stemwall anchorage solutions based on minimum concrete strength, f'c, noted in table. Concrete strengths above 2,500 psi appear bold and underlined.

5. Anchor strength indicates required grade of SSWAB or WSW-AB anchor bolt. ASTM F1554 Gr. 36 for Standard and ASTM A449 for High Strength (HS).

6. Seismic indicates Seismic Design Category C through F. Seismic anchorage designs conform to ACI 318-14 Section 17.2.3.4.3.

7. Wind includes Seismic Design Category A and B and detached 1 and 2 family dwellings in SDC C.

8. Anchor reinforcement is for development of tension anchorage solutions only. Concrete stemwall and footing design (size and reinforcement) by Designer.

9. Anchor reinforcement development and lap splice requirements are in accordance with ACI 318-14 Sections 25.4 and 25.5.2 respectively.

10. Strong-Wall panel location, anchor reinforcement development length, lap splice length and installation details provided in Figures 1-5.

11. Concrete cover for anchor bolt and reinforcement shall be in accordance with ACI 318-14 Section 20.6 requirements.

12. NS = No solution.

Table 2: Strong-Wall shearwall and Anchor Bolt Models by Anchor Diameter

Anchor Diameter (in.)	Applicable Strong-Wall Models	Standard Strength Anchor Bolt Model	High Strength Anchor Bolt Model	
3/4	SSW12	SSWAB¾ x 30	SSWAB¾ x 36HS	
7/8	WSW12, WSW18	WSW-AB% x 30	WSW-AB% x 36HS	
1	WSW24	WSW-AB1 x 30	WSW-AB1 x 36HS	
1	SSW15, SSW18, SSW21, SSW24	SSWAB1 x 30	SSWAB1 x 36HS	

1. Anchor bolt models provided ensure adequate anchor reinforcement development length. See C-L-SW17 for product, design and installation information.

2. Galvanized anchor bolts available, contact Simpson Strong-Tie for details.

Page 2 of 4

L-L-STEMANCHR19

L-L-STEMANCHR19

Figure 5: Concrete Stemwall Elevation with Strong-Wall Anchor Reinforcement and Placement Requirements

Table 3: Strong-Wall Anchor Bolt Edge Distance

Applicable	Anchor Bolt Edge Distance Based on Strong-Wall Panel Location				
Strong-Wall Models	Edge of Concrete	Flush with Inside Face of 2x6 Wall			
SSW12	2"	3-5/8"			
WSW12, WSW18	1-3/4"	3-3/4"			
WSW24	1-3/4"	3-3/4"			
SSW15, SSW18, SSW21, SSW24	1-7/8"	3-5/8"			

1. Anchor bolt templates are recommended to properly locate bolts and are required in some jurisdictions.

2. See C-L-SW17 Strong-Wall Shearwalls catalog for product, design, and installation information.

L-L-STEMANCHR19

Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.1605 www.strongtie.com

QUANIUM Consulting Engineers
1511 THIRD AVENUE SUITE 323 SEATTLE WA 98101 TEL 205.957,3900 FAX 206.957,3901 www.quantumce.com
BOK. ROD STATES ON A STATES
DESIGN FRU, TVM, MDA
DRAWN SSN
CHECKED SKK
SHEET ISSUE DATE - 3/11/19
DATE DESCRIPTION
3/11/19 PERMIT SET
Stuart Silk Architects
2400 N. 45th St. Seattle, WA 98103
WWW.STUARTSILK.COM
LEE-BOYLE
4150 BOULEVARD PLACE MERCER ISLAND.
NA 98040
Main Floor Framing Plan
S2.1

